
Query single table

Query data in columns c1, c2 from a table
SELECT c1, c2 FROM t;

Query all rows and columns from a table
SELECT * FROM t;

Query data and filter rows with a conditi-
on
SELECT c1, c2 FROM t
WHERE condition;

Query distinct rows from a table
SELECT DISTINCT c1 FROM t
WHERE condition;

Sort the result set in ascending or de-
scending order
SELECT c1, c2 FROM t
ORDER BY c1 [ASC | DESC];

Skip offset of rows and return the next n
rows
SELECT c1, c2 FROM t
ORDER BY c1
LIMIT n OFFSET offset;

Group rows using an aggregate function
SELECT c1, aggregate(c2)
FROM t
GROUP BY c1;

Filter groups using HAVING clause
SELECT c1, aggregate(c2)
FROM t
GROUP BY c1
HAVING condition;

SQL Aggegate functions

• AVG returns the average of a list
• COUNT returns the number of ele-
ments of a list

• SUM returns the total of a list
• MAX returns the maximum value in
a list

• MIN returns the minimum value in
a list

Joins

Inner join t1 and t2
SELECT c1, c2
FROM t1
JOIN t2 ON condition;

Left join t1 and t2
SELECT c1, c2
FROM t1
LEFT JOIN t2 ON condition;

Right join t1 and t2
SELECT c1, c2
FROM t1
RIGHT JOIN t2 ON condition;

Perform full outer join
SELECT c1, c2
FROM t1
FULL OUTER JOIN t2 ON condition;

Perform a cross join / cartesian product

SELECT c1, c2
FROM t1, t2;

Join t1 to itself using JOIN clause
SELECT c1, c2
FROM t1 A
JOIN t1 B ON condition;

SQL Operators

Combine rows from two queries
SELECT c1, c2 FROM t1
UNION
SELECT c1, c2 FROM t2;

Return the intersection of two queries
SELECT c1, c2 FROM t1
INTERSECT
SELECT c1, c2 FROM t2;

Subtract a result set from another result
set
SELECT c1, c2 FROM t1
EXCEPT
SELECT c1, c2 FROM t2;

Query rows using pattern matching
SELECT c1, c2 FROM t1
WHERE c1 [NOT] LIKE pattern;

Query rows in a list
SELECT c1, c2 FROM t
WHERE c1 [NOT] IN value_list;

Query rows between two values
SELECT c1, c2 FROM t
WHERE c1 BETWEEN low AND hi;

Check if value in a table is NULL or not
SELECT c1, c2 FROM t
WHERE c1 IS [NOT] NULL;

Managing Tables

Create a new table with three columns
CREATE TABLE t (
id SERIAL PRIMARY KEY,
name VARCHAR(30) NOT NULL,
price NUMERIC(10,2) DEFAULT 0
);

Delete the table from the database
DROP TABLE t;

Add a new column c to the table
ALTER TABLE t ADD column c type;

Drop column c from the table
ALTER TABLE t DROP COLUMN c;

Remove all data in a table
TRUNCATE TABLE t;

Using SQL constraints

Set c1 and c2 as a primary key
CREATE TABLE t(
c1 INT, c2 INT, c3 VARCHAR,
PRIMARY KEY (c1,c2)
);

Set c2 column as a foreign key
CREATE TABLE t1(
c1 SERIAL PRIMARY KEY,
c2 INT,

FOREIGN KEY (c2) REFERENCES t2(c2)
);

Make the values in c1 and c2 unique
CREATE TABLE t(
c1 INT, c1 INT,
UNIQUE(c2,c3)
);

Ensure c1 > 0 and values in c1 >= c2
CREATE TABLE t(
c1 INT, c2 INT,
CHECK(c1> 0 AND c1 >= c2)
);

Set values in c2 column not NULL
CREATE TABLE t(
c1 SERIAL PRIMARY KEY,
c2 VARCHAR NOT NULL
);

Stored Procedures

Basic template for stored procedure
CREATE OR REPLACE FUNCTION
func_name(parameters) RETURNS
data_type AS $$

DECLARE
variable_declarations

BEGIN
function_body

END; $$ LANGUAGE plpgsql;

Assignment uses :=
x := y + z

Fetch single value from sql query
SELECT single_value INTO var FROM
table WHERE id = 17;

Trigger

Create or modify a trigger
CREATE OR REPLACE TRIGGER
trigger_name

WHEN EVENT
ON table_name TRIGGER_TYPE
EXECUTE FUNCTION stored_procedure;

WHEN:
BEFORE – invoke before the event occurs
AFTER – invoke after the event occurs
EVENT:
INSERT – invoke for INSERT
UPDATE – invoke for UPDATE
DELETE – invoke for DELETE
TRIGGER_TYPE:
FOR EACH ROW
FOR EACH STATEMENT

Create a trigger invoked before a new
row is inserted into the person table
CREATE TRIGGER
before_insert_person

BEFORE INSERT
ON person FOR EACH ROW
EXECUTE FUNCTION stored_procedure;

Delete a specific trigger
DROP TRIGGER trigger_name;


